

TO1-3PEG-Biotin Fluorophore

Cat. No. G7955

Store at -20°C. Protect from light.

Product Description

RNA Mango technology is based on the specific binding of the RNA Mango Aptamer and a Thizole Orange (TO) bi-functional dye. Features of this technology are the tight binding between the dye and aptamer (KD \approx 3nM), and the strong ~1000X enhancement of the dye's fluorescence when bound to the Mango apatmer (Fluorescent enhancement FE=1,100). The TO dye has a number of other desirable properties including:

- small size
- lack of toxicity
- plasma and nuclear membrane permeability
- short intracellular half-life
- the accessibility of a broad wavelength range simply via substitutions and alterations to the TO structure

TO1-biotin is the standard variety of TO dye for in vitro and in vivo RNA Mango and RNA Peach experiments.

Cat. No.	Product	Quantity
G7955	TO1-3PEG-Biotin Fluorophore	250 μM (100 μl)

Applications

Application	Recommended Final Concentration of RNA Mango Dye
In Vitro Fluorescence Assays	100 nM – 200 nM
In Vivo Cellular Imaging	100 nM – 200 nM
In Vitro Transcription (IVT) and RNA Purification	50 nM – 200 nM
FRET Assay	50 nM – 500 nM

Product Specifications

Structure

Form

Shelf Life

Shelf Life	Three (3) months from receipt.	
General Notes	Do not store in water. May break down in water.	

Properties of the Fluorophore-Aptamer Complex

Quantum Yield for the Mango I Complex	Фbound = 0.14
Binding Affinity to Mango I Aptamer	3 nM (KCL required)
Fluorescent Enhancement when Bound to Mango I Aptamer	~1000
Extinction Coefficient when Bound to Mango I Aptamer	ε ₅₁₀ = 77,500 M ⁻¹ cm ⁻¹
Brightness when Bound to Mango I Aptamer	B ₅₃₅ = 11,000 M ⁻¹ cm ⁻¹

Patent

US11434490B2

References

1. Dolgosheina, E.V., and Unrau, P.J. (2016). Fluorophore-binding RNA aptamers and their applications: Fluorophore-binding RNA aptamers. Wiley Interdiscip. Rev. RNA. 2. Jeng, S.C.Y., et al. (2016). Fluorophore ligand binding and complex stabilization of the RNA Mango and RNA Spinach aptamers. RNA 22, 1884–1892. 3. Trachman III, R.J., et al. (2017). Structural basis for high-affinity fluorophore binding and activation by RNA Mango. Nat. Chem. Biol. 13(7): 807-813. 4. Autour, A., et al. (2018). Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells. Nat Commun 9, 656. 5. Cawte, A.D., et al. (2020). Live cell imaging of single RNA molecules with fluorogenic Mango II arrays. Nat Commun 11, 1283. 6. Kong, Kristen Y.S., et al. (2021). RNA Peach and Mango: Orthogonal two-color fluorogenic aptamers distinguish nearly identical ligands. RNA (New York, N.Y.), vol. 27,5 604-615.